A systematic study on parameter correlations in large scale duplicate document detection 1

نویسندگان

  • Shaozhi Ye
  • Ji-Rong Wen
  • Wei-Ying Ma
چکیده

Although much work has been done on duplicate document detection (DDD) and its applications, we observe the absence of a systematic study on the performance and scalability of large-scale DDD algorithms. It is still unclear how various parameters in DDD correlate mutually, such as similarity threshold, precision/recall requirement, sampling ratio, and document size. This paper explores the correlations among several most important parameters in DDD and the impact of sampling ratio is of most interest since it heavily affects the accuracy and scalability of DDD algorithms. An empirical analysis is conducted on a million HTML documents from the TREC .GOV collection. Experimental results show that even using the same sampling ratio, the precision of DDD varies greatly on documents with different sizes. Based on this observation, we propose an adaptive sampling strategy for DDD, which minimizes the sampling ratio with the constraint of a given precision requirement. We believe that the insights from our analysis are helpful for guiding the future large scale DDD work.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A systematic study of parameter correlations in large scale duplicate document detection

Although much work has been done on duplicate document detection (DDD) and its applications, we observe the absence of a systematic study of the performance and scalability of large-scale DDD. It is still unclear how various parameters of DDD, such as similarity threshold, precision/recall requirement, sampling ratio, document size, correlate mutually. In this paper, correlations among several ...

متن کامل

A TWO-STAGE DAMAGE DETECTION METHOD FOR LARGE-SCALE STRUCTURES BY KINETIC AND MODAL STRAIN ENERGIES USING HEURISTIC PARTICLE SWARM OPTIMIZATION

In this study, an approach for damage detection of large-scale structures is developed by employing kinetic and modal strain energies and also Heuristic Particle Swarm Optimization (HPSO) algorithm. Kinetic strain energy is employed to determine the location of structural damages. After determining the suspected damage locations, the severity of damages is obtained based on variations of modal ...

متن کامل

Duplicate Detection for Symbolically Compressed Documents

A new family of symbolic compression algorithms has recently been developed that includes the ongoing JBIG2 standardization effort as well as related commercial products. These techniques are specifically designed for binary document images. They cluster individual blobs in a document and store the sequence of occurrence of blobs and representative blob templates, hence the name symbolic compre...

متن کامل

Large Scale Parallel Document Mining for Machine Translation

A distributed system is described that reliably mines parallel text from large corpora. The approach can be regarded as cross-language near-duplicate detection, enabled by an initial, low-quality batch translation. In contrast to other approaches which require specialized metadata, the system uses only the textual content of the documents. Results are presented for a corpus of over two billion ...

متن کامل

Space and Time Scalability of Duplicate Detection in Graph Data

Duplicate detection consists in determining different representations of real-world objects in a database. Recent research has considered the use of relationships among object representations to improve duplicate detection. In the general case where relationships form a graph, research has mainly focused on duplicate detection quality/effectiveness. Scalability has been neglected so far, even t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004